Eksponensiële Geweegde Bewegende Gemiddelde Pdf
Bewegende gemiddelde en eksponensiële gladstryking modelle As 'n eerste stap in die beweging van buite gemiddelde modelle, ewekansige loop modelle, en lineêre tendens modelle, nonseasonal patrone en tendense kan geëkstrapoleer deur 'n bewegende-gemiddelde of glad model. Die basiese aanname agter gemiddelde en glad modelle is dat die tyd reeks is plaaslik stilstaande met 'n stadig wisselende gemiddelde. Vandaar, neem ons 'n bewegende (plaaslike) gemiddelde om die huidige waarde van die gemiddelde skat en dan gebruik dit as die voorspelling vir die nabye toekoms. Dit kan beskou word as 'n kompromie tussen die gemiddelde model en die ewekansige-stap-sonder-drif-model. Dieselfde strategie gebruik kan word om te skat en ekstrapoleer 'n plaaslike tendens. 'N bewegende gemiddelde is dikwels 'n quotsmoothedquot weergawe van die oorspronklike reeks, want kort termyn gemiddelde het die effek van gladstryking uit die knoppe in die oorspronklike reeks. Deur die aanpassing van die mate van gladstryking (die breedte van die bewegende gemiddelde), kan ons hoop om 'n soort van 'n optimale balans tussen die prestasie van die gemiddelde en die stogastiese wandeling modelle slaan. Die eenvoudigste soort gemiddelde model is die. Eenvoudige (ewe-geweeg) Moving Average: Die voorspelling vir die waarde van Y op tyd T1 wat gemaak word op tydstip t is gelyk aan die eenvoudige gemiddelde van die mees onlangse m waarnemings: (hier en elders sal ek die simbool 8220Y-hat8221 gebruik om op te staan vir 'n voorspelling van die tyd reeks Y gemaak op die vroegste moontlike voor datum deur 'n gegewe model.) Hierdie gemiddelde is gesentreer op tydperk t (M1) / 2, wat impliseer dat die skatting van die plaaslike gemiddelde sal neig om agter die werklike waarde van die plaaslike gemiddelde met sowat (M1) / 2 periodes. So, sê ons die gemiddelde ouderdom van die data in die eenvoudige bewegende gemiddelde is (M1) / 2 met betrekking tot die tydperk waarvoor die voorspelling is bereken: dit is die hoeveelheid tyd waarop voorspellings sal neig om agter draaipunte in die data. Byvoorbeeld, as jy gemiddeld die afgelope 5 waardes, sal die voorspellings wees oor 3 periodes laat in reaksie op draaipunte. Let daarop dat indien M1, die eenvoudige bewegende gemiddelde (SMA) model is soortgelyk aan die ewekansige loop model (sonder groei). As m is baie groot (vergelykbaar met die lengte van die skatting tydperk), die SMA model is gelykstaande aan die gemiddelde model. Soos met enige parameter van 'n voorspelling model, is dit gebruiklik om die waarde van k te pas ten einde die beste quotfitquot om die data, dit wil sê die kleinste voorspelling foute gemiddeld behaal. Hier is 'n voorbeeld van 'n reeks wat blykbaar ewekansige skommelinge toon om 'n stadig-wisselende gemiddelde. In die eerste plek kan probeer om dit aan te pas met 'n ewekansige loop model, wat gelykstaande is aan 'n eenvoudige bewegende gemiddelde van 1 kwartaal: Die ewekansige loop model reageer baie vinnig om veranderinge in die reeks, maar sodoende dit tel baie van die quotnoisequot in die data (die ewekansige skommelinge) asook die quotsignalquot (die plaaslike gemiddelde). As ons eerder probeer 'n eenvoudige bewegende gemiddelde van 5 terme, kry ons 'n gladder lyk stel voorspellings: Die 5 termyn eenvoudige bewegende gemiddelde opbrengste aansienlik kleiner foute as die ewekansige loop model in hierdie geval. Die gemiddelde ouderdom van die data in hierdie voorspelling is 3 ((51) / 2), sodat dit is geneig om agter draaipunte met sowat drie periodes. (Byvoorbeeld, blyk 'n afswaai het plaasgevind by tydperk 21, maar die voorspellings nie omdraai tot verskeie tydperke later.) Let daarop dat die langtermyn-voorspellings van die SMA model is 'n horisontale reguit lyn, net soos in die ewekansige loop model. So, die SMA model veronderstel dat daar geen neiging in die data. Maar, terwyl die voorspellings van die ewekansige loop model is eenvoudig gelyk aan die laaste waargenome waarde, die voorspellings van die SMA model is gelykstaande aan 'n geweegde gemiddelde van die afgelope waardes. Die vertroue perke bereken deur Stat Graphics vir die langtermyn-voorspellings van die eenvoudige bewegende gemiddelde nie groter as die vooruitskatting horison styg kry. Dit is natuurlik nie korrek Ongelukkig is daar geen onderliggende statistiese teorie wat ons vertel hoe die vertrouensintervalle behoort te brei vir hierdie model. Dit is egter nie te moeilik om empiriese ramings van die vertroue perke vir die langer-horison voorspellings te bereken. Byvoorbeeld, kan jy die opstel van 'n sigblad waarop die SMA model sal gebruik word om 2 stappe vooruit, 3 stappe vooruit, ens binne die historiese data monster voorspel. Jy kan dan bereken die monster standaardafwykings van die foute op elke voorspelling horison, en dan bou vertrouensintervalle vir langer termyn voorspellings deur optelling en aftrekking veelvoude van die toepaslike standaard afwyking. As ons probeer om 'n 9-termyn eenvoudige bewegende gemiddelde, kry ons selfs gladder voorspellings en meer van 'n sloerende uitwerking: Die gemiddelde ouderdom is nou 5 periodes ((91) / 2). As ons 'n 19-termyn bewegende gemiddelde te neem, die gemiddelde ouderdom toeneem tot 10: Let daarop dat, inderdaad, is die voorspellings nou agter draaipunte met sowat 10 periodes. Watter bedrag van smoothing is die beste vir hierdie reeks Hier is 'n tabel wat hulle dwaling statistieke vergelyk, ook met 'n 3-gemiddelde: Model C, die 5-termyn bewegende gemiddelde, lewer die laagste waarde van RMSE deur 'n klein marge oor die 3 - term en 9 termyn gemiddeldes, en hul ander statistieke is byna identies. So, onder modelle met 'n baie soortgelyke fout statistieke, kan ons kies of ons 'n bietjie meer responsiewe ingesteldheid of 'n bietjie meer gladheid in die voorspellings sou verkies. (Terug na bo.) Browns Eenvoudige Eksponensiële Smoothing (eksponensieel geweeg bewegende gemiddelde) Die eenvoudige bewegende gemiddelde model hierbo beskryf het die ongewenste eienskap dat dit behandel die laaste k Waarnemings ewe en heeltemal ignoreer al voorafgaande waarnemings. Intuïtief, moet afgelope data verdiskonteer in 'n meer geleidelike mode - byvoorbeeld, die mees onlangse waarneming moet 'n bietjie meer gewig kry as 2 mees onlangse, en die 2de mees onlangse moet 'n bietjie meer gewig as die 3 mees onlangse kry, en so aan. Die eenvoudige eksponensiële gladstryking (SES) model accomplishes hierdie. Laat 945 dui n quotsmoothing constantquot ( 'n getal tussen 0 en 1). Een manier om die model te skryf is om 'n reeks L dat die huidige vlak (dit wil sê die plaaslike gemiddelde waarde) van die reeks verteenwoordig as geraamde van data tot op hede te definieer. Die waarde van L op tydstip t is rekursief bereken uit sy eie vorige waarde soos volg: Dus, die huidige stryk waarde is 'n interpolasie tussen die vorige stryk waarde en die huidige waarneming, waar 945 kontroles die nabyheid van die geïnterpoleerde waarde tot die mees onlangse waarneming. Die voorspelling vir die volgende tydperk is eenvoudig die huidige stryk waarde: anders gestel ons kan die volgende voorspelling direk in terme van vorige voorspellings en vorige waarnemings uit te druk, in enige van die volgende ekwivalent weergawes. In die eerste weergawe, die voorspelling is 'n interpolasie tussen vorige skatting en vorige waarneming: In die tweede weergawe, is die volgende voorspelling verkry deur die aanpassing van die vorige skatting in die rigting van die vorige fout deur 'n breukdeel bedrag 945. is die fout gemaak by tyd t. In die derde weergawe, die voorspelling is 'n eksponensieel geweeg (dit wil sê afslag) bewegende gemiddelde met afslag faktor 1- 945: Die interpolasie weergawe van die voorspelling formule is die eenvoudigste om te gebruik as jy die uitvoering van die model op 'n spreadsheet: dit pas in 'n enkele sel en bevat selverwysings verwys na die vorige skatting, die vorige waarneming, en die sel waar die waarde van 945 gestoor. Let daarop dat indien 945 1, die SES model is gelykstaande aan 'n ewekansige loop model (sonder groei). As 945 0, die SES model is gelykstaande aan die gemiddelde model, met die veronderstelling dat die eerste stryk waarde gelyk aan die gemiddelde is ingestel. (Terug na bo.) Die gemiddelde ouderdom van die data in die eenvoudige eksponensiële-glad voorspelling is 1/945 relatief tot die tydperk waarvoor die voorspelling is bereken. (Dit is nie veronderstel duidelik te wees, maar dit kan maklik aangetoon deur die evaluering van 'n oneindige reeks.) Dus, die eenvoudige bewegende gemiddelde voorspelling is geneig om agter draaipunte met sowat 1/945 periodes. Byvoorbeeld, wanneer 945 0.5 die lag is 2 periodes wanneer 945 0.2 die lag is 5 periodes wanneer 945 0.1 die lag is 10 periodes, en so aan. Vir 'n gegewe gemiddelde ouderdom (bv bedrag van lag), die eenvoudige eksponensiële gladstryking (SES) voorspelling is 'n bietjie beter as die eenvoudige bewegende gemiddelde (SMA) voorspel, want dit plaas relatief meer gewig op die mees onlangse waarneming --i. e. dit is 'n bietjie meer quotresponsivequot om veranderinge voorkom in die onlangse verlede. Byvoorbeeld, 'n SMA model met 9 terme en 'n SES model met 945 0.2 beide het 'n gemiddelde ouderdom van 5 vir die data in hul voorspellings, maar die SES model plaas meer gewig op die laaste 3 waardes as wel die SMA model en by die Terselfdertyd is dit doesn8217t heeltemal 8220forget8221 oor waardes meer as 9 tydperke oud was, soos getoon in hierdie grafiek: nog 'n belangrike voordeel van die SES model die SMA model is dat die SES model maak gebruik van 'smoothing parameter wat voortdurend veranderlike, so dit kan maklik new deur die gebruik van 'n quotsolverquot algoritme om die gemiddelde minimum te beperk kwadraat fout. Die optimale waarde van 945 in die SES model vir hierdie reeks blyk te wees 0,2961, soos hier gewys word: die gemiddelde ouderdom van die data in hierdie voorspelling is 1 / 0,2961 3.4 tydperke, wat soortgelyk is aan dié van 'n 6-termyn eenvoudige bewegende gemiddelde. Die langtermyn-voorspellings van die SES model is 'n horisontale reguit lyn. soos in die SMA model en die ewekansige loop model sonder groei. Let egter daarop dat die vertrouensintervalle bereken deur Stat Graphics nou divergeer in 'n redelike aantreklike mode, en dat hulle aansienlik nouer as die vertrouensintervalle vir die ewekansige loop model. Die SES model veronderstel dat die reeks is 'n bietjie quotmore predictablequot as wel die ewekansige loop model. 'N SES model is eintlik 'n spesiale geval van 'n ARIMA model. sodat die statistiese teorie van ARIMA modelle bied 'n goeie basis vir die berekening van vertrouensintervalle vir die SES model. In die besonder, 'n SES model is 'n ARIMA model met een nonseasonal verskil, 'n MA (1) termyn, en geen konstante term. andersins bekend as 'n quotARIMA (0,1,1) model sonder constantquot. Die MA (1) koëffisiënt in die ARIMA model stem ooreen met die hoeveelheid 1- 945 in die SES model. Byvoorbeeld, as jy 'n ARIMA (0,1,1) model inpas sonder konstante om die reeks te ontleed hier, die beraamde MA (1) koëffisiënt blyk te wees 0,7029, wat byna presies 'n minus 0,2961. Dit is moontlik om die aanname van 'n nie-nul konstante lineêre tendens voeg by 'n SES model. Om dit te doen, net 'n ARIMA model met een nonseasonal verskil en 'n MA (1) termyn met 'n konstante, dit wil sê 'n ARIMA (0,1,1) model met 'n konstante spesifiseer. Die langtermyn-voorspellings sal dan 'n tendens wat gelyk is aan die gemiddelde tendens waargeneem oor die hele skatting tydperk is. Jy kan dit nie doen in samewerking met seisoenale aanpassing, omdat die aanpassing opsies seisoenale is afgeskakel wanneer die model tipe is ingestel op ARIMA. Jy kan egter 'n konstante langtermyn eksponensiële tendens om 'n eenvoudige eksponensiële gladstryking model voeg (met of sonder seisoenale aanpassing) deur gebruik te maak van die opsie inflasie-aanpassing in die vooruitskatting prosedure. Die toepaslike quotinflationquot (persentasie groei) koers per periode kan geskat word as die helling koëffisiënt in 'n lineêre tendens model toegerus om die data in samewerking met 'n natuurlike logaritme transformasie, of dit kan op grond van ander, onafhanklike inligting oor die langtermyn groeivooruitsigte . (Terug na bo.) Browns Lineêre (dws dubbel) Eksponensiële glad die SMA modelle en SES modelle aanvaar dat daar geen tendens van enige aard in die data (wat gewoonlik OK of ten minste nie-te-sleg vir 1- stap-ahead voorspellings wanneer die data is relatief raserig), en hulle kan verander word om 'n konstante lineêre tendens inkorporeer soos hierbo getoon. Wat van kort termyn tendense As 'n reeks vertoon 'n wisselende koers van groei of 'n sikliese patroon wat uitstaan duidelik teen die geraas, en as daar 'n behoefte aan meer as 1 tydperk wat voorlê voorspel, dan skatting van 'n plaaslike tendens kan ook wees n probleem. Die eenvoudige eksponensiële gladstryking model veralgemeen kan word na 'n lineêre eksponensiële gladstryking (LES) model wat plaaslike begrotings van beide vlak en tendens bere te kry. Die eenvoudigste-time wisselende tendens model is Browns lineêr eksponensiële gladstryking model, wat twee verskillende reëlmatige reeks wat op verskillende punte gesentreer in die tyd gebruik. Die vooruitskatting formule is gebaseer op 'n ekstrapolasie van 'n streep deur die twee sentrums. ( 'N meer gesofistikeerde weergawe van hierdie model, Holt8217s, word hieronder bespreek.) Die algebraïese vorm van Brown8217s lineêr eksponensiële gladstryking model, soos dié van die eenvoudige eksponensiële gladstryking model, uitgedruk kan word in 'n aantal verskillende maar ekwivalente vorms. Die quotstandardquot vorm van hierdie model word gewoonlik uitgedruk as volg: Laat S dui die enkel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking om reeks Y. Dit is, is die waarde van S op tydperk t gegee word deur: (Onthou dat, onder eenvoudige eksponensiële gladstryking, dit sou die voorspelling vir Y by tydperk T1 wees) Dan Squot dui die dubbel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking (met behulp van dieselfde 945) tot reeks S:. ten slotte, die voorspelling vir Y tk. vir enige kgt1, word gegee deur: Dit lewer e 1 0 (dit wil sê kul n bietjie, en laat die eerste skatting gelyk wees aan die werklike eerste waarneming), en e 2 Y 2 8211 Y 1. waarna voorspellings gegenereer met behulp van die vergelyking hierbo. Dit gee dieselfde toegerus waardes as die formule gebaseer op S en S indien laasgenoemde is begin met behulp van S 1 S 1 Y 1. Hierdie weergawe van die model gebruik word op die volgende bladsy wat 'n kombinasie van eksponensiële gladstryking met seisoenale aanpassing illustreer. Holt8217s Lineêre Eksponensiële Smoothing Brown8217s LES model bere plaaslike begrotings van vlak en tendens deur glad die onlangse data, maar die feit dat dit nie so met 'n enkele glad parameter plaas 'n beperking op die data patrone wat dit in staat is om aan te pas: die vlak en tendens word nie toegelaat om wissel op onafhanklike tariewe. Holt8217s LES model spreek hierdie kwessie deur die insluiting van twee glad konstantes, een vir die vlak en een vir die tendens. Te eniger tyd t, soos in Brown8217s model, die daar is 'n skatting L t van die plaaslike vlak en 'n skatting T t van die plaaslike tendens. Hier is hulle rekursief bereken vanaf die waarde van Y op tydstip t en die vorige raming van die vlak en tendens waargeneem deur twee vergelykings wat eksponensiële gladstryking afsonderlik van toepassing op hulle. As die geskatte vlak en tendens op tydstip t-1 is L t82091 en T t-1. onderskeidelik, dan is die voorspelling vir Y tshy wat op tydstip t-1 sal gemaak is gelyk aan L t-1 T T-1. Wanneer die werklike waarde is waargeneem, is die opgedateer skatting van die vlak rekursief bereken deur interpol tussen Y tshy en sy voorspelling, L t-1 T T-1, die gebruik van gewigte van 945 en 1- 945. Die verandering in die geskatte vlak, naamlik L t 8209 L t82091. geïnterpreteer kan word as 'n lawaaierige meting van die tendens op tydstip t. Die opgedateer skatting van die tendens is dan rekursief bereken deur interpol tussen L t 8209 L t82091 en die vorige skatting van die tendens, T t-1. die gebruik van gewigte van 946 en 1-946: Die interpretasie van die tendens-glad konstante 946 is soortgelyk aan dié van die vlak glad konstante 945. Models met klein waardes van 946 aanvaar dat die tendens verander net baie stadig met verloop van tyd, terwyl modelle met groter 946 aanvaar dat dit vinniger is om te verander. 'N Model met 'n groot 946 is van mening dat die verre toekoms is baie onseker, omdat foute in die tendens-skatting word baie belangrik wanneer voorspel meer as een tydperk wat voorlê. (Terug na bo.) Die smoothing konstantes 945 en 946 kan in die gewone manier word beraam deur die vermindering van die gemiddelde kwadraat fout van die 1-stap-ahead voorspellings. Wanneer dit in Stat Graphics gedoen, die skattings uitdraai om te wees 945 0.3048 en 946 0,008. Die baie klein waarde van 946 beteken dat die model veronderstel baie min verandering in die tendens van een tydperk na die volgende, so basies hierdie model is besig om 'n langtermyn-tendens skat. Volgens analogie met die idee van die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike vlak van die reeks, die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike tendens is eweredig aan 1/946, hoewel nie presies gelyk aan Dit. In hierdie geval is dit blyk 1 / 0,006 125. Dit isn8217t n baie presiese aantal sover die akkuraatheid van die skatting van 946 isn8217t regtig 3 desimale plekke te wees, maar dit is van dieselfde algemene orde van grootte as die steekproefgrootte van 100 , so hierdie model is gemiddeld oor 'n hele klomp van die geskiedenis in die skatte van die tendens. Die voorspelling plot hieronder toon dat die LES model skat 'n effens groter plaaslike tendens aan die einde van die reeks as die konstante tendens geskat in die SEStrend model. Ook waarvan die beraamde waarde van 945 is byna identies aan die een wat deur die pas van die SES model met of sonder tendens, so dit is amper dieselfde model. Nou, doen hierdie lyk redelike voorspellings vir 'n model wat veronderstel is om te beraming 'n plaaslike tendens As jy hierdie plot 8220eyeball8221, dit lyk asof die plaaslike tendens afwaarts gedraai aan die einde van die reeks: Wat het die parameters van hierdie model gebeur is beraam deur die vermindering van die kwadraat fout van 1-stap-ahead voorspellings, nie langer termyn voorspellings, in welke geval die tendens 'n groot verskil doesn8217t maak. As alles wat jy is op soek na is 1-stap-ahead foute, is jy nie sien die groter prentjie van tendense oor (sê) 10 of 20 periodes. Ten einde hierdie model meer in harmonie te kry met ons oogbal ekstrapolasie van die data, kan ons met die hand die tendens-glad konstante pas sodat dit 'n korter basislyn vir tendens skatting. Byvoorbeeld, as ons kies om te stel 946 0.1, dan is die gemiddelde ouderdom van die gebruik in die skatte van die plaaslike tendens data is 10 periodes, wat beteken dat ons die gemiddeld van die tendens oor daardie laaste 20 periodes of so. Here8217s wat die voorspelling plot lyk asof ons '946 0.1 terwyl 945 0.3. Dit lyk intuïtief redelike vir hierdie reeks, maar dit is waarskynlik gevaarlik om hierdie tendens te ekstrapoleer nie meer as 10 periodes in die toekoms. Wat van die fout statistieke Hier is 'n model vergelyking vir die twee modelle hierbo asook drie SES modelle getoon. Die optimale waarde van 945.Vir die SES model is ongeveer 0,3, maar soortgelyke resultate (met 'n bietjie meer of minder 'n responsiewe ingesteldheid, onderskeidelik) verkry met 0,5 en 0,2. (A) Holts lineêre exp. glad met alfa 0,3048 en beta 0,008 (B) Holts lineêre exp. glad met alfa 0,3 en beta 0,1 (C) Eenvoudige eksponensiële gladstryking met alfa 0,5 (D) Eenvoudige eksponensiële gladstryking met alfa 0,3 (E) Eenvoudige eksponensiële gladstryking met alfa 0,2 hul statistieke is byna identies, so ons can8217t regtig die keuse te maak op die basis van 1-stap-ahead voorspelling foute binne die data monster. Ons het om terug te val op ander oorwegings. As ons glo dat dit sinvol om die huidige tendens skatting van wat die afgelope 20 periodes of so gebeur baseer, kan ons 'n saak vir die LES model met 945 0.3 en 946 0.1 maak. As ons wil hê agnostikus te wees oor die vraag of daar 'n plaaslike tendens, dan een van die SES modelle makliker om te verduidelik kan wees en sou ook vir meer middel-of-the-road voorspellings vir die volgende 5 of 10 periodes. (Terug na bo.) Watter tipe tendens-ekstrapolasie die beste: horisontale of lineêre empiriese bewyse dui daarop dat, indien die data is reeds aangepas (indien nodig) vir inflasie, dan is dit dalk onverstandig om kort termyn lineêre ekstrapoleer wees tendense baie ver in die toekoms. Tendense duidelik vandag mag verslap in die toekoms as gevolg van uiteenlopende oorsake soos produk veroudering, toenemende mededinging en sikliese afswaai of opwaartse fases in 'n bedryf. Om hierdie rede, eenvoudige eksponensiële gladstryking voer dikwels beter out-of-monster as wat dit andersins word verwag, ten spyte van sy quotnaivequot horisontale tendens ekstrapolasie. Gedempte tendens veranderinge van die lineêre eksponensiële gladstryking model word ook dikwels gebruik in die praktyk om 'n aantekening van konserwatisme in te voer in die tendens projeksies. Die gedempte-tendens LES model geïmplementeer kan word as 'n spesiale geval van 'n ARIMA model, in die besonder, 'n ARIMA (1,1,2) model. Dit is moontlik om vertrouensintervalle rondom langtermyn voorspellings wat deur eksponensiële gladstryking modelle bereken deur die oorweging van hulle as spesiale gevalle van ARIMA modelle. (Pasop: nie alle sagteware bereken vertrouensintervalle vir hierdie modelle korrek.) Die breedte van die vertrouensintervalle hang af van (i) die RMS fout van die model, (ii) die tipe glad (eenvoudige of lineêr) (iii) die waarde (s) van die smoothing konstante (s) en (iv) die aantal periodes voor jy voorspel. In die algemeen, die tussenposes versprei vinniger as 945 kry groter in die SES model en hulle uitgebrei, sodat baie vinniger as lineêre, eerder as eenvoudige smoothing gebruik. Hierdie onderwerp word verder in die ARIMA modelle deel van die notas bespreek. (Terug na bo.) Geweegde Moving Gemiddeldes: Die Basics Oor die jare, het tegnici twee probleme met die eenvoudige bewegende gemiddelde gevind. Die eerste probleem lê in die tyd van die bewegende gemiddelde (MA). Die meeste tegniese ontleders glo dat die prys aksie. die opening of sluiting voorraad prys, is nie genoeg om op te hang vir goed voorspel koop of te verkoop seine van die MA crossover aksie. Om hierdie probleem op te los, het ontleders nou meer gewig toeken aan die mees onlangse prys data deur gebruik te maak van die eksponensieel stryk bewegende gemiddelde (EMA). (Meer inligting in die ondersoek van die eksponensieel geweeg bewegende gemiddelde.) 'N voorbeeld Byvoorbeeld, met behulp van 'n 10-dag MA, sou 'n ontleder die sluitingsprys van die 10de dag te neem en vermeerder hierdie getal deur 10, die negende dag van nege, die agtste van dag tot agt en so aan tot die eerste van die MA. Sodra die totale bepaal, sou die ontleder dan verdeel die aantal deur die byvoeging van die vermenigvuldigers. As jy die vermenigvuldigers van die 10-dag MA voorbeeld te voeg, die getal is 55. Hierdie aanwyser is bekend as die lineêr geweeg bewegende gemiddelde. (Vir verwante leesstof, check Eenvoudige bewegende gemiddeldes Maak Trends uitstaan.) Baie tegnici is ferm gelowiges in die eksponensieel stryk bewegende gemiddelde (EMA). Hierdie aanwyser is verduidelik in so baie verskillende maniere waarop dit verwar studente en beleggers sowel. Miskien is die beste verduideliking kom van John J. Murphy tegniese ontleding van die finansiële markte, (uitgegee deur die New York Instituut van Finansies, 1999): Die eksponensieel stryk bewegende gemiddelde adresse beide van die probleme wat verband hou met die eenvoudige bewegende gemiddelde. Eerstens, die eksponensieel stryk gemiddelde ken 'n groter gewig aan die meer onlangse data. Daarom is dit 'n geweegde bewegende gemiddelde. Maar terwyl dit ken mindere belang vir verlede prys data, beteken dit sluit in die berekening al die data in die lewe van die instrument. Daarbenewens het die gebruiker in staat is om die gewig te pas by mindere of meerdere gewig te gee aan die mees onlangse dae prys, wat by 'n persentasie van die vorige dae waarde. Die som van beide persentasie waardes voeg tot 100. Byvoorbeeld, die laaste dae die prys kan 'n gewig van 10 (0,10), wat by die vorige dae gewig van 90 (0,90) opgedra. Dit gee die laaste dag 10 van die totale gewig. Dit sou die ekwivalent van 'n 20-dag gemiddeld deur die laaste dae die prys 'n kleiner waarde van 5 (0,05) wees. Figuur 1: eksponensieel stryk bewegende gemiddelde Bogenoemde grafiek toon die Nasdaq saamgestelde indeks van die eerste week in Augustus 2000 tot 1 Junie 2001 As jy duidelik kan sien, die EMO, wat in hierdie geval is die gebruik van die sluitingsprys data oor 'n tydperk van nege dae, het definitiewe verkoop seine op die 8 September (gekenmerk deur 'n swart afpyltjie). Dit was die dag toe die indeks het onder die vlak 4000. Die tweede swart pyl toon 'n ander af been wat tegnici eintlik verwag het nie. Die Nasdaq kon genoeg volume en belangstelling van die kleinhandel beleggers na die 3000 merk breek nie genereer. Dit dan duif weer af na onder uit by 1619,58 op April 4. Die uptrend van 12 April is gekenmerk deur 'n pyl. Hier is die indeks gesluit 1,961.46, en tegnici begin institusionele fondsbestuurders begin om af te haal 'n paar winskopies soos Cisco, Microsoft en 'n paar van die energie-verwante kwessies te sien. (Lees ons verwante artikels: Moving Gemiddelde Koeverte: Verfyning 'n gewilde Trading Tool en bewegende gemiddelde Bounce.) Eksponensiële bewegende gemiddelde - EMO laai die speler. Afbreek van Eksponensiële bewegende gemiddelde - EMO Die 12- en 26-dag EMA is die gewildste kort termyn gemiddeldes, en hulle word gebruik om aanwysers soos die bewegende gemiddelde konvergensie divergensie (MACD) en die persentasie prys ossillator (PPO) te skep. In die algemeen, is die 50- en 200-dag EMA as seine van 'n lang termyn tendense. Handelaars wat tegniese ontleding diens vind bewegende gemiddeldes baie nuttig en insiggewend wanneer dit korrek toegepas word, maar skep chaos wanneer onbehoorlik gebruik of verkeerd verstaan. Al die bewegende gemiddeldes wat algemeen gebruik word in tegniese ontleding is, volgens hulle aard, sloerende aanwysers. Gevolglik moet die afleidings wat op die toepassing van 'n bewegende gemiddelde op 'n bepaalde mark grafiek wees om 'n mark skuif bevestig of om sy krag te toon. Heel dikwels is, teen die tyd dat 'n bewegende gemiddelde aanwyser lyn het 'n verandering aan 'n beduidende stap in die mark weerspieël gemaak het die optimale punt van toegang tot die mark reeds geslaag. 'N EMO nie dien om hierdie dilemma te verlig tot 'n mate. Omdat die EMO berekening plaas meer gewig op die jongste data, dit drukkies die prys aksie 'n bietjie stywer en reageer dus vinniger. Dit is wenslik wanneer 'n EMO word gebruik om 'n handels inskrywing sein herlei. Interpretasie van die EMO Soos alle bewegende gemiddelde aanwysers, hulle is baie meer geskik vir trending markte. Wanneer die mark is in 'n sterk en volgehoue uptrend. die EMO aanwyser lyn sal ook 'n uptrend en andersom vir 'n down tendens toon. A waaksaam handelaar sal nie net aandag te gee aan die rigting van die EMO lyn, maar ook die verhouding van die tempo van verandering van die een bar na die volgende. Byvoorbeeld, as die prys aksie van 'n sterk uptrend begin plat en reverse, van die EMAS tempo van verandering van die een bar na die volgende sal begin om te verminder tot tyd en wyl die aanwyser lyn plat en die tempo van verandering is nul. As gevolg van die sloerende uitwerking, deur hierdie punt, of selfs 'n paar bars voor, die prys aksie moet reeds omgekeer. Dit volg dus dat die waarneming van 'n konsekwente verminderde in die tempo van verandering van die EMO kon self gebruik word as 'n aanduiding dat die dilemma wat veroorsaak word deur die sloerende uitwerking van bewegende gemiddeldes verder kon teen te werk. Algemene gebruike van die EMO EMA word algemeen gebruik word in samewerking met ander aanwysers aan beduidende mark beweeg bevestig en om hul geldigheid te meet. Vir handelaars wat intraday en vinnig bewegende markte handel te dryf, die EMO is meer van toepassing. Dikwels handelaars gebruik EMA om 'n handels vooroordeel bepaal. Byvoorbeeld, as 'n EMO op 'n daaglikse grafiek toon 'n sterk opwaartse neiging, kan 'n intraday handelaars strategie wees om net handel van die lang kant op 'n intraday chart. Exponential Bewegende Gemiddeldes n bewegende gemiddelde is 'n aanduiding dat die gemiddelde waarde van 'n toon securitys prys oor 'n tydperk van tyd. 'N eksponensiële (of eksponensieel geweegde) bewegende gemiddelde bereken word deur die toepassing van 'n persentasie van vandag se sluiting prys yesterdays bewegende gemiddelde waarde. Eksponensiële bewegende gemiddeldes te plaas meer gewig op onlangse pryse. Berekening Byvoorbeeld, 'n 9 eksponensiële bewegende gemiddelde van IBM bereken, sou jy die eerste maal in vandag se sluiting prys en vermenigvuldig dit met 9. Volgende, sou jy hierdie produk toe te voeg tot die waarde van gisters bewegende gemiddelde vermenigvuldig met 91 (100-9 91) . Omdat die meeste beleggers voel meer gemaklik saam met tydperke, eerder as om met persentasies, kan die eksponensiële persentasie omgeskakel word in 'n geskatte aantal dae. Byvoorbeeld, 'n 9 bewegende gemiddelde is gelykstaande aan 'n 21,2 tydperk (afgerond tot 21) eksponensiële bewegende gemiddelde. Die formule vir die omskakeling van eksponensiële persentasies om tydperke is: Jy kan die bogenoemde formule gebruik om te bepaal dat 'n 9 bewegende gemiddelde is gelykstaande aan 'n 21-dag eksponensiële bewegende gemiddelde: Die formule vir die omskakeling van tydperke te eksponensiële persentasies is: Jy kan die gebruik bogenoemde formule om te bepaal dat 'n 21-dag eksponensiële bewegende gemiddelde is eintlik 'n 9 bewegende gemiddelde: Voorbeeld Chart Die in hierdie artikel beskryf strategieë is slegs vir inligting doeleindes, en die gebruik daarvan waarborg nie 'n wins te maak. Nie een van die inligting wat verskaf moet word beskou as 'n aanbeveling of werwing om te belê in, of likwideer, 'n bepaalde sekuriteit of tipe sekuriteit. Beleggers moet ten volle na te vors enige sekuriteit voordat 'n belegging besluit. Sekuriteite aan die mark skommeling en kan waarde verloor. Scottrade ontvang die hoogste numeriese telling in die J. D. Power 2016 Selfgerigte Beleggers tevredenheid Studie, gebaseer op 4242 reaksies meet 13 maatskappye en die ervarings en persepsies van beleggers wat gebruik selfgerigte beleggingsondernemingen, ondervra in Januarie 2016. Jou ervarings kan wissel. Besoek jdpower. Gemagtig inskrywing en toegang dui kliënte toestemming om die makelaarsloon rekening ooreenkoms. Sulke toestemming effektief te alle tye wanneer die gebruik van hierdie webwerf. Ongemagtigde toegang verbied. Scottrade, Inc. en Scottrade Bank is afsonderlike maar geaffilieerde maatskappye en is volfiliale van Scottrade Financial Services, Inc. makelaarsloon produkte en dienste wat aangebied word deur Scottrade, Inc. - Lid FINRA en SIPC. Deposito produkte en dienste wat aangebied word deur Scottrade Bank, lid FDIC. Makelaarsloon produkte is nie oortuig deur die FDIC is nie deposito's of ander verpligtinge van die bank en is nie gewaarborg nie deur die bank is onderhewig aan belegging risiko's, insluitende die moontlike verlies van die skoolhoof belê. Alle beleggings behels risiko. Die waarde van jou belegging kan wissel met verloop van tyd, en jy kan kry of geld verloor. Online mark en perk voorraad ambagte is net 7 vir aandele geprys 1 en hoër. Bykomende koste kan aansoek doen vir aandele prys minder as 1, onderlinge fonds en opsie transaksies. Gedetailleerde inligting oor ons fooie kan gevind word in die Verklaring van Fooie (PDF). Jy moet 500 in aandele in 'n individu, Gesamentlike, Trust, IRA, Roth IRA, of September IRA rekening met Scottrade om in aanmerking te kom vir 'n Scottrade bankrekening. In hierdie geval, is aandele gedefinieer as Totaal makelaarsloon rekening Waarde minus Onlangse makelaarsloon Deposito op te hou. Die prestasie data aangehaal verteenwoordig prestasie in die verlede. Vorige prestasie waarborg nie toekomstige resultate. Die navorsing, gereedskap en inligting wat sal insluit nie elke sekuriteit aan die publiek beskikbaar. Hoewel die bronne van die navorsing gereedskap verskaf op hierdie webwerf is geloofwaardig te wees, Scottrade maak geen waarborg met betrekking tot die inhoud, akkuraatheid, volledigheid, tydigheid, geskiktheid of betroubaarheid van die inligting. Inligting op hierdie webwerf is slegs ter inligting gebruik en moet nie beskou word as beleggingsadvies of aanbeveling te belê. Scottrade nie opstel, onaktiwiteit of jaarlikse onderhoud fooie. Toepassing transaksiefooie steeds van toepassing. Scottrade verskaf nie belastingadvies. Die materiaal verskaf is slegs vir inligting doeleindes. Asseblief met jou belasting of regsadviseur vir vrae met betrekking tot jou persoonlike belasting of finansiële situasie. Enige spesifieke sekuriteite, of tipes van effekte, gebruik as voorbeelde is slegs vir demonstrasie. Nie een van die inligting wat verskaf moet word beskou as 'n aanbeveling of werwing om te belê in, of likwideer, 'n bepaalde sekuriteit of tipe sekuriteit. Beleggers moet die beleggingsdoelwitte, koste, koste, en 'n unieke risikoprofiel van 'n beursverhandelde fonds (ETF) voor te belê oorweeg. 'N Prospektus bevat hierdie en ander inligting oor die fonds en kan verkry word aanlyn of deur kontak Scottrade. Die prospektus moet versigtig voor te belê gelees. Aged en omgekeerde ETF dalk nie geskik vir alle beleggers nie en kan blootstelling aan wisselvalligheid te verhoog deur die gebruik van hefboom, kort verkope van effekte, afgeleide instrumente en ander komplekse beleggingstrategieë. Hierdie fondse prestasie sal waarskynlik beduidend anders as hul maatstaf oor 'n tydperk van meer as 'n dag, en hul prestasie met verloop van tyd kan in werklikheid tendens teenoorgestelde van hul maatstaf. Beleggers moet hierdie Holdings, in ooreenstemming met hul strategieë te monitor, so dikwels as daaglikse. Beleggers moet die beleggingsdoelwitte, risiko's, koste en uitgawes van 'n onderlinge fonds oorweeg voordat 'n belegging. 'N Prospektus bevat hierdie en ander inligting oor die fonds en kan verkry word aanlyn of deur kontak Scottrade. Die prospektus moet versigtig voor te belê gelees. Geen-transaksie-fooi (NTF) fondse is onderhewig aan die terme en voorwaardes van die NTF fondse program. Scottrade vergoed word deur die fondse wat deelneem aan die NTF program deur rekordhouding, aandeelhouer of SEC 12B-1 fooie. Marge handel behels renteheffings en risiko's, insluitende die potensiaal om meer te verloor as gedeponeer of die behoefte om bykomende kollaterale in 'n dalende mark te deponeer. Die marge Openbaringsverklaring en ooreenkoms (PDF) is beskikbaar vir aflaai, of dit beskikbaar is by een van ons takkantore. Dit bevat inligting oor ons uitleen beleid, renteheffings, en die risiko's wat verband hou met marge rekeninge. Opsies behels risiko en is nie geskik vir alle beleggers. Gedetailleerde inligting oor ons beleid en die risiko's wat verband hou met opsies kan gevind word in die Scottrade Options Aansoek en ooreenkoms. Makelaarsloon rekening ooreenkoms. deur die aflaai van die eienskappe en risiko's van gestandaardiseerde Options en aanvullings (PDF) uit die opsies Clearing Corporation, of deur 'n afskrif versoek deur kontak Scottrade. Ondersteunende dokumentasie vir enige eise sal voorsien word op versoek. Konsulteer met jou belasting adviseur vir meer inligting oor hoe belasting die uitkoms van hierdie strategieë kan beïnvloed. Hou in gedagte, sal die wins verminder of verlies vererger, soos van toepassing, deur die aftrekking van kommissie en fooie. Markonbestendigheid, kan die volume en stelsel beskikbaarheid toegang rekening en handel uitvoering impak. Hou in gedagte dat terwyl diversifikasie verspreiding risiko kan help, is dit nie 'n wins te verseker, of te beskerm teen verlies, in 'n down mark. Scottrade, die Scottrade logo en alle ander handelsmerke, hetsy geregistreer of ongeregistreer, is die eiendom van Scottrade, Inc en sy affiliasies. Skakels na webwerwe van derde partye bevat inligting wat van belang kan wees of gebruik om die leser. Derdeparty-webwerwe, navorsing en gereedskap is uit bronne betroubaar geag. Scottrade waarborg nie die akkuraatheid of volledigheid van die inligting en maak geen versekering met betrekking tot die resultate wat verkry word uit die gebruik daarvan. 2016 Scottrade, Inc. Alle regte reserved. Documentation tsmovavg uitset tsmovavg (tsobj, s, lag) gee terug Die eenvoudige bewegende gemiddeld vir finansiële tydreekse voorwerp, tsobj. lag dui die aantal vorige datapunte gebruik met die huidige data punt by die berekening van die bewegende gemiddelde. uitset tsmovavg (vektor, s, lag, dowwe) gee terug Die eenvoudige bewegende gemiddelde vir 'n vektor. lag dui die aantal vorige datapunte gebruik met die huidige data punt by die berekening van die bewegende gemiddelde. uitset tsmovavg (tsobj, e, timeperiod) gee terug Die eksponensiële geweegde bewegende gemiddelde vir finansiële tydreekse voorwerp, tsobj. Die eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod spesifiseer die tydperk. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n 10-tydperk eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. Eksponensiële Persentasie 2 / (TIMEPER 1) of 2 / (WINDOWSIZE 1). uitset tsmovavg (vektor, e, timeperiod, dowwe) gee terug Die eksponensiële geweegde bewegende gemiddelde vir 'n vektor. Die eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod spesifiseer die tydperk. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n 10-tydperk eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. (2 / (timeperiod 1)). uitset tsmovavg (tsobj, t, numperiod) gee terug Die driehoekige bewegende gemiddelde vir finansiële tydreekse voorwerp, tsobj. Die driehoekige bewegende gemiddelde dubbel glad die data. tsmovavg word bereken dat die eerste eenvoudige bewegende gemiddelde met venster breedte van oordek (numperiod 1) / 2. Dan bereken dit 'n tweede eenvoudige bewegende gemiddelde op die eerste bewegende gemiddelde met dieselfde venster grootte. uitset tsmovavg (vektor, t, numperiod, dowwe) gee terug Die driehoekige bewegende gemiddelde vir 'n vektor. Die driehoekige bewegende gemiddelde dubbel glad die data. tsmovavg word bereken dat die eerste eenvoudige bewegende gemiddelde met venster breedte van oordek (numperiod 1) / 2. Dan bereken dit 'n tweede eenvoudige bewegende gemiddelde op die eerste bewegende gemiddelde met dieselfde venster grootte. uitset tsmovavg (tsobj, w, gewigte) gee terug Die geweegde bewegende gemiddelde vir die finansiële tydreekse voorwerp, tsobj. deur die verskaffing van gewigte vir elke element in die bewegende venster. Die lengte van die gewig vektor bepaal die grootte van die venster. As groter gewig faktore word gebruik vir meer onlangse pryse en kleiner faktore vir vorige pryse, die neiging is meer ontvanklik vir onlangse wysigings. uitset tsmovavg (vektor, w, gewigte, dowwe) gee terug Die geweegde bewegende gemiddelde vir die vektor deur die verskaffing van gewigte vir elke element in die bewegende venster. Die lengte van die gewig vektor bepaal die grootte van die venster. As groter gewig faktore word gebruik vir meer onlangse pryse en kleiner faktore vir vorige pryse, die neiging is meer ontvanklik vir onlangse wysigings. uitset tsmovavg (tsobj, m, numperiod) gee terug Die gemodifiseerde bewegende gemiddelde vir die finansiële tydreekse voorwerp, tsobj. Die aangepaste bewegende gemiddelde is soortgelyk aan die eenvoudige bewegende gemiddelde. Oorweeg die argument numperiod die lag van die eenvoudige bewegende gemiddelde wees. Die eerste gewysigde bewegende gemiddelde bereken word soos 'n eenvoudige bewegende gemiddelde. Daaropvolgende waardes word bereken deur die toevoeging van die nuwe prys en trek die laaste gemiddelde van die gevolglike bedrag. uitset tsmovavg (vektor, m, numperiod, dowwe) gee terug Die gemodifiseerde bewegende gemiddelde vir die vektor. Die aangepaste bewegende gemiddelde is soortgelyk aan die eenvoudige bewegende gemiddelde. Oorweeg die argument numperiod die lag van die eenvoudige bewegende gemiddelde wees. Die eerste gewysigde bewegende gemiddelde bereken word soos 'n eenvoudige bewegende gemiddelde. Daaropvolgende waardes word bereken deur die toevoeging van die nuwe prys en trek die laaste gemiddelde van die gevolglike bedrag. dowwe 8212 dimensie te bedryf saam positiewe heelgetal met waarde 1 of 2 Dimension te bedryf saam, wat as 'n positiewe heelgetal met 'n waarde van 1 of 2. dowwe is 'n opsionele insette argument, en as dit nie gebruik word as 'n inset, die verstek waarde 2 word aanvaar. Die standaard van dowwe 2 dui op 'n ry-georiënteerde matriks, waar elke ry is 'n veranderlike en elke kolom is 'n waarneming. As dowwe 1. die insette is veronderstel om 'n kolomvektor of-kolom-georiënteerde matriks, waar elke kolom is 'n veranderlike en elke ry 'n waarneming wees. e 8212 aanwyser vir eksponensiële bewegende gemiddelde karakter vektor Eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod is die tydperk van die eksponensiële bewegende gemiddelde. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n tydperk van 10 eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. Eksponensiële Persentasie 2 / (TIMEPER 1) of 2 / (WINDOWSIZE 1) timeperiod 8212 Lengte van tyd positiewe getal Kies 'n land
Comments
Post a Comment